paralel çizgilerin tanımı

Bir Doğru , hepsi aynı yönde yerleştirilmiş sonsuz bir noktalar dizisidir, oysa bu dizi sürekli ve belirsiz olmakla karakterize edilir, bu nedenle bir çizginin ne başlangıcı ne de sonu vardır; düzlem ve nokta ile birlikte, çizgi temel geometrik varlıklardan biridir. Ve paralel, benzer, karşılık gelen veya aynı zamanda geliştirilmiş bir şeye atıfta bulunmak için kullanılan bir sıfattır.

Şunu da belirtmek gerekir ki, çizgiler, başlangıcı olan ama sonu olmayan ışınlardan, belli noktalarda başlayan ve biten segmentlerden çok farklı olacaktır.

Yani, paralel çizgiler olanlardır onlar çapraz bilmediğimiz, aynı düzlemde aynı eğime sahiptir ve herhangi bir ortak noktası yok çizgiler, bu araçlar, veya dokunmatik ve hatta onların uzantıları geçmeye gidiyoruz değil . En popüler örneklerden biri tren yoludur.

Özellikleri şunlardır: refleksif (her çizgi kendine paraleldir), simetrik (eğer bir çizgi diğerine paralelse, ilkine paralel olacaktır), geçişli (eğer bir çizgi diğerine paralelse ve bu onun Bir kez üçüncüye paralel olarak, birincisi üçüncü çizgiye paralel olacaktır), geçişli p'nin doğal sonucu ( üçüncüye paralel iki çizgi birbirine paralel olacaktır) ve sonuç (tüm paralel çizgiler aynı yöne sahiptir).

Bu arada paralel çizgilerle ilgili teoremler bize şunu söylüyor: Bir düzlemde üçte birine dik iki doğrunun birbirine paralel olacağını; bir çizginin dışındaki bir noktadan, o çizgiye paralel bir nokta her zaman geçecektir; ve eğer bir çizgi iki paralelden birini keserse, diğerini de keser, her zaman bir düzlemde konuşur.

Paralel çizgilerin çizimi bir cetvel ve kare veya bir cetvel ve pusula ile yapılabilir.

Tarih boyunca çizgilerin incelenmesi

Öklid, Yunanistan'ın klasik döneminde çok tanınmış bir matematikçiydi ve tüm katkılarına rağmen geometrinin babası olarak kabul ediliyor . MÖ 325-265 yılları arasında İskenderiye'de yaşadı ve yönetmeyi bildiği bir ekip ile birlikte dünyanın en popüler bilimsel eserlerinden biri olarak kabul edilen The Elements'in eserini yazdı ve bir o zamandan beri öğretilen temel geometri bilgisinin iyi bir kısmı

Bu arada, bunun tersi nasıl olabilir, Öklidler, Paralel Postülatı kurdular ya da Öklidin Beşinci Postülatı olarak da adlandırdıkları, yukarıda bahsedilen Öğeler kitabının beş numaralı postulatında satırlar sorununu ele aldı . İçinde, bir doğru, diğer iki doğru üzerinde meydana geldiğinde, tarafa karşılık gelen iç açıları iki düz çizgiden daha az yaparsa, iki düz çizgiden daha küçük açıların olduğu tarafta süresiz olarak uzayan iki çizginin bulunacağı belirtilmektedir. çizgiler bulundu.